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Abstract

We present and validate a numerical technique for computing dendritic growth of crystals from pure melts in the

presence of forced convection. The Navier–Stokes equations are solved on a fixed Cartesian mesh and a mixed

Eulerian–Lagrangian framework is used to treat the immersed phase boundary as a sharp solid–fluid interface. A

conservative finite-volume discretization is employed which allows the boundary conditions to be applied exactly at the

moving surface. Results are presented for a range of the growth parameters, namely crystalline anisotropy, flow

Reynolds number and Prandtl number. Direct comparisons are made between the present results and those obtained

with phase-field methods and excellent agreement is obtained. Values for the tip characteristics are tabulated to serve as

benchmarks for computations of two-dimensional dendritic growth with convection.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

A method for computing the evolution of dendritic

phase boundaries on fixed Cartesian grids is presented.

The effect of imposed forced convection on the dendrite

tip morphology is investigated. The phase front is trea-

ted as a sharp boundary that runs through the mesh and

a conservative finite-volume method is applied for so-

lution of the Navier–Stokes equations. The numerical

solutions are validated against available [1–4] two-

dimensional dendritic growth solutions under the effect

of forced convection.

In previous work [5] we described a finite-difference

technique for simulation of diffusion-controlled growth

of unstable phase boundaries. For the case of dendritic

solidification of pure materials from the melt, we dem-

onstrated that a sharp interface approach can be de-

veloped that yields globally second-order accurate

solutions to the field equations. The interface position

was computed with first-order accuracy. In subsequent

work [6,7], we devised a finite-volume approach for

solving the incompressible Navier–Stokes equations to

compute incompressible flows around fixed and moving

immersed solid bodies.

This paper combines the capability to evolve den-

dritic phase boundaries presented in Ref. [5] with the

Navier–Stokes solver in Ref. [7]. As in the case of the

Navier–Stokes solutions presented in the latter refer-

ence, fluxes (of heat in the present case) are explicitly

conserved across the control volume faces. Using a

compact linear-quadratic interpolant [5] to evaluate the

fluxes at the control volume faces that are cut by the

immersed interface, a second-order accurate flux evalu-

ation procedure is devised.

Various techniques, including phase-field [1–3,10,11],

level-sets [12–14], finite-elements [15,16], and finite-dif-

ference front-tracking [5,17], have been employed to

simulate dendritic solidification. The phase-field method

is currently the most popular approach and was the first

approach used [2,3] to determine whether the quantita-

tive measures, such as tip radius, velocity and the se-

lection parameter of the numerically grown dendrites

could be validated against microscopic solvability the-

ory. This method has also been used to study the be-

havior of dendrite tips under the influence of forced
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convection [4]. The phase-field method falls under the

class of Eulerian (i.e. fixed grid) methods called ‘‘diffuse

interface’’ methods [18]. In such methods the interface is

not a sharp phase boundary but is given a certain

thickness or spread on the computational mesh. Typi-

cally, the interface thickness occupies a few mesh cells. A

front-tracking method for the case of dendritic growth

with convection has also been presented in [30]. How-

ever, the treatment of the solid–liquid front in the so-

lution of the governing equations is not sharp as in the

present work.

To our knowledge, the present work represents the

first sharp interface simulations of dendritic growth in

the presence of convection. While the interface is tracked

in this work using markers and curves the approach can

use other, more versatile interface representations that

permit treatment of the boundaries as sharp entities,

such as level-set methods [12]. This is being done in

ongoing work using level-sets to track the interface. The

present work places the finite-volume sharp interface

approach on sound footing by directly comparing the

results of the computations with results from the often

used phase-field approach [4,8]. The method is shown to

predict the correct physical behavior in the dendritic

growth of pure materials. This validation effort aug-

ments the demonstration of grid size and orientation

independence and convergence studies for the sharp in-

terface method for dendritic growth in the diffusion-

limited regime, presented in Udaykumar et al. [9]. These

solutions provide benchmarks for calculations of den-

drite tips growing in the presence of axially directed

forced convection.

2. Solvability theory and convection effect

Microscopic solvability is the currently accepted

theory for the growth of dendritic structures in solidifi-

cation from the melt. Extensive reviews on the subject

are available (e.g. [19]). Bouissou and Pelce [22] devel-

oped the solvability theory including convective effects

on dendrites, using an Oseen flow solution under the

assumptions of: (a) uniform flow at velocity U1 directed

along an axis of the dendrite, (b) an isothermal tip and

(c) the tip as a paraboloid of revolution. They obtained

the solution for the translating paraboloid which pro-

vides the steady-state tip radius (qt) and tip velocity (Vt)
as:

D ¼ Pet expðPet � PefÞ

�
Z 1

1

f�Petg þ Pefb2þ
R g
1

gð1Þffiffi
1

p d1 � gcgffiffiffi
g

p dg ð1Þ

where D is the undercooling, Pet the tip Peclet num-
ber¼ Vtqt=2a, Pef is the flow Peclet number¼U1qt=2a,
Re is the Reynolds number¼ðU1qtÞ=m ¼ ð2PefÞ=Pr

where a is the thermal diffusivity, m is the kinematic
viscosity and e is the anisotropy parameter. The function
gðfÞ is given by:

gð1Þ ¼ ffiffiffi
1

p erfcð
ffiffiffiffiffiffi
Re

p
1=2Þ

erfcð
ffiffiffiffiffiffiffiffiffiffi
Re=2

p
Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpReÞ

p
erfcð

ffiffiffiffiffiffiffiffiffiffi
Re=2

p
Þ

� ½expð�Re=2Þ � expð�Re1=2Þ�

The above expressions reduce to the Ivantsov solution

[20] for the no-flow case. The primary result from the

solvability theory with convection is that the selection

parameter for the case with flow (r�) is related to the

value in the absence of flow ðr�
0 ¼ ð2ad0Þ=ðq2t VtÞÞ,

through:

r�
0

r� ffi 1þ bv11=14 for v � 1;

while

r�
0

r� ffi 1 for v � 1 ð2Þ

where the capillary length d0 ¼ ðc0TmCpÞ=L2, and the
parameters v ¼ ðaðReÞd0U1Þ=ðb3=4qtVtÞ, b ¼ 15e and

aðReÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Re=p

p
expð�Re=2Þerfc

ffiffiffiffiffiffiffiffiffiffi
Re=2

p
. In the present

case the Reynolds numbers are low, so that the v � 1

situation holds. In this limit the selection parameter

should change little from the no-flow case.

3. Governing equations

To test the numerics, we grow a dendritic front for

specified control parameters, namely the undercooling

(D), capillary length (d0), anisotropy strength (�) and
imposed flow strength measured by the non-dimensional

velocity U1d0=al. The predicted selection parameter (r�)

and selected tip radius (qt) and velocity (Vt) are then
compared with the results of solvability theory and with

the diffuse-interface results obtained from phase-field

method [4,8]. The following non-dimensional quantities

are used: length x ¼ X=d0, time s ¼ tal=d20 , velocity
~uu ¼ ð~UUd0Þ=al, and temperature H ¼ ðT � TmÞ=ðL=CpÞ.
The incompressible Navier–Stokes equations are

solved:

r �~uu ¼ 0 ð3Þ

o~uu
os

þ~uu � r~uu ¼ �rp þ Prr2~uu ð4Þ

Pr is the Prandtl number¼ ml=al where m is the kinematic
viscosity, subscript l stands for the liquid phase. The

heat conduction equation is solved in the solid and liq-

uid phases separately, in non-dimensional form:

oH
os

þ~uu � rH ¼ a�
l=sr2H ð5Þ

In the above the convective term applies in the solid

phase, the variable a�
l=s ¼ al=s=al is the non-dimensional
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diffusivity only, and subscript l/s indicates the phase

(liquid or solid). The interface temperature equation is

written in non-dimensional form:

Hi ¼ �dðhÞj ð6Þ

where j is the interfacial curvature and the capillarity
parameter is prescribed using the model [13] and

dðhÞ ¼ d0ð1� 15e cos 4hÞ ð7Þ

For phase change of pure materials the normal velocity

at a point on the front is provided by the rate of

transport of latent heat away from the solid–liquid

interface (Stefan condition). In non-dimensional form,

this equation is:

Vi ¼
oH
on

� �
s

�
� oH

on

� �
l

�
ð8Þ

where subscripts s and l apply to solid and liquid re-

spectively and n represents the direction normal to the

interface. Note that the boundary conditions at the

farfield (at large distance r from the origin) for a crystal
growing in the undercooled melt with a uniform flow

directed toward the dendrite tip then become:

Hðr ! 1; sÞ ¼ �D ð9aÞ

uðr ! 1; sÞ ¼ U1d0
al

ð9bÞ

4. Numerical method

4.1. Interface tracking

The interface is tracked using markers connected by

piecewise quadratic curves parametrized with respect to

the arclength. Details regarding interface representation,

evaluation of derivatives along the interface to obtain

normals, curvatures etc. have been presented in previous

papers [5,7] and are not repeated here. Also described in

earlier papers are details regarding the interaction of the

interfaces with the underlying fixed Cartesian mesh.

These include obtaining locations where the interface

cuts the mesh, identifying phases in which the cell cen-

ters lie, and procedures for obtaining a consistent mosaic

of control volumes in the cells [6].

4.2. Flow solver

The fractional step scheme [24] is used for advancing

the fluid flow solution in time. The Navier–Stokes

equations are discretized on the Cartesian mesh using a

cell-centered collocated (non-staggered) arrangement of

the primitive variables (~uu; p). The integral forms of the
non-dimensionalized governing equations are used as

the starting point:

I
~uu �~nndS ¼ 0 ð10Þ

o

os

Z
~uudV þ

I
~uuð~uu � n̂nÞdS

¼ �
I

p~nndS þ Pr
I

r~uu � n̂ndS ð11Þ

where~nn is a unit vector normal to the face of the control
volume. The above equations are to be solved with

~uuð~xx; tÞ ¼~uuoð~xx; tÞ on the boundary of the flow domain
where ~uuoð~xx; tÞ is the prescribed boundary velocity, in-
cluding that at the solid–liquid interface. A second-order

accurate, two-step fractional step method is used [6]. A

second-order Adams-Bashforth scheme is employed for

the convective terms and the diffusion terms are dis-

cretized using an implicit Crank-Nicolson scheme. In

addition to the cell-center velocities, which are denoted

by ~uu, we also introduce face-center velocities ~uuf . In a
manner similar to a fully-staggered arrangement, only

the component normal to the cell-face is computed and

stored. The face-center velocity is used for computing

the volume flux from each cell in the finite-volume dis-

cretization scheme. The advantage of separately com-

puting the face-center velocities has been discussed in the

context of the current method in [6]. The semi-discrete

form of the advection-diffusion equation for each cell

can therefore be written as follows:

Z
v

~uu� �~uun

ds
dV ¼ � 1

2

I
½3~uunð~uunf �~nnÞ �~uun�1ð~uun�1f �~nnÞ�dS

þ Pr
2

I
ðr~uun þr~uu�Þ � n̂ndS ð12Þ

where ~uu� is the intermediate cell-center velocity. The
advection-diffusion step is followed by the pressure-

correction step:

Z
v

~uunþ1 �~uun

dt
dV ¼ �

Z
v
rpnþ1 dV ð13Þ

By requiring a divergence-free velocity field at the end of

the time-step we get the equation for pressure,

I
rpnþ1 dS ¼ 1

dt

I
~uu�f �~nndS ð14Þ

which is the weak form of the pressure Poisson equation.

Once the pressure is obtained by solving this equation,

both the cell-center and face-center velocities, ~uu and ~uuf
are updated separately as follows:

~uunþ1 ¼~uu� � dtðrpnþ1Þcc ð15Þ

~uunþ1f ¼~uu�f � dtðrpnþ1Þfc ð16Þ

where subscripts cc and fc indicate evaluation at the cell

center and face center locations respectively.
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The energy equation, is written in semi-discrete form

as:
Z
v

Hnþ1 � Hn

dt
dV ¼ � 1

2

I
½3Hnð~uunf �~nnÞ � Hn�1ð~uun�1f �~nnÞ�dS

þ al=s
2

I
ðrHnþ1 þrHnÞ � n̂ndS ð17Þ

The above Crank–Nicolson scheme provides nominal

second-order temporal accuracy.

In discrete form Eq. (17) is written, for a control

volume in the Cartesian mesh indexed (i; j) as:

DVij
dt

ðHnþ1
ij � Hn

ijÞ ¼
al=s
2

X5
f¼1

oH
on

nþ1�
þ oH

on

n �
f

DSf

� 1
2

X5
f¼1

½3Hnð~uunf �~nnÞ

� Hn�1ð~uun�1f �~nnÞ�DSf ð18Þ

The fluxes at control volume faces are evaluated by

constructing a compact two-dimensional polynomial

interpolating function [6] from available neighboring

cell-center values, which gives a second-order accurate

approximation of the fluxes and gradients on the faces

of the trapezoidal boundary cells. This interpolation

scheme coupled with the finite-volume formulation

guarantees that the accuracy and conservation property

of the underlying algorithm is retained even in the

presence of arbitrary-shaped immersed boundaries.

The discrete equations are solved using the standard

line-SOR procedure, with alternate sweeps in the i- and
j-directions and a standard Thomas algorithm for the

solution of the resulting tri-diagonal matrix. The use of a

Cartesian grid allows for the use of these fast solution

procedures. The discretization of the fluid velocity and

pressure Poisson equations has been described in detail

in previous papers [7]. A multigrid method is used for

fast solution of the pressure Poisson equation.

4.3. Computing the interface velocity

The interface velocity is obtained as described in [5].

The temperature gradient in each phase is obtained by

the normal probe technique, where a normal from the

interface marker is extended into each phase. The tem-

perature values at two nodes on the normal, placed at

distances equal to the local mesh spacing dx, are ob-
tained from the background mesh by bilinear interpo-

lation. Second-order accuracy of this technique has been

demonstrated in Udaykumar et al. [5]. The gradient is

then obtained as:

oH
on

¼ 4Hn1 � Hn2 � 3Hint

2dx
ð19Þ

where subscripts n1 and n2 imply evaluations of tem-
perature at the two nodes on the normal probe and

subscript int implies the value on the interface. Having

calculated the temperature gradients in each phase using

Eq. (19), the interface velocities are computed at the

markers using Eq. (8). These are then advected to new

positions in order to evolve the interface in time.

4.4. Overall solution procedure

For curvature-driven growth problems, stability of

the interface update requires an implicit coupled pro-

cedure for obtaining the field solution [26,27] and the

interface position simultaneously at time level tnþ1. In
the absence of an implicit, coupled treatment of the field

solution and interface evolution, the calculations can

become very stiff. The stability restriction on an explicit

scheme can be very severe (dt ¼ Oðdx3Þ) as demon-
strated by Hou et al. [26]. However, solving for the fluid

flow equations, particularly the pressure Poisson equa-

tion iteratively over each time step would be computa-

tionally taxing. Moreover, the interface shape couples

directly with the temperature field through the Stefan

and Gibbs–Thomson condition and only indirectly to

the fluid flowfield through its effect on the thermal field.

Therefore, within a time step we only couple the tem-

perature field and interface update in an iterative fashion

while updating the velocity and pressure fields in the

usual manner outside the iteration loop.

An implicit procedure similar to that employed in [5]

is used. The overall solution procedure with boundary

motion is as follows:

(0) Advance to next time step t ¼ t þ dt. Iteration coun-
ter k ¼ 0.

(1) Update the interface position. Determine the inter-

section of the immersed boundary with the Carte-

sian mesh. Using this information, reshape the

boundary cells.

(2) Solve the fluid flow and pressure Poisson equations.

Correct the velocity field to satisfy zero-divergence.

(3) Augment iteration counter, k ¼ k þ 1.
(4) Determine the intersection of the immersed bound-

ary with the Cartesian mesh. Using this information,

reshape the boundary cells. For each reshaped

boundary cell, compute and store the coefficients

appearing in discrete form for the energy equation,

Eq. (18).

(5) Advance the discretized heat equation in time to ob-

tain Hk
ij.

(6) Advance the interface position in time.

(7) Check whether the temperature field and interface

have converged.

Convergence is declared if: max jHk
ij � Hk�1

ij j < eT
and max jXk

ip � Xk�1
ip j < eI, where k is the iteration

number and � is a convergence tolerance set to 10�5

in the calculations so that the solution obtained is

independent of the convergence criterion.
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(8) If not converged, go to step 3 for next iteration. If

converged, go to step 0 for next time step.

Typically, less that five iterations of the heat equation

and interface update are required for convergence since

the previous time step solution provides an excellent

guess to the solution at the current step. Note that with

this implicit iterative approach stable computations of

interface evolution can be performed with time-step sizes

that are controlled by a CFL-type criterion of the form

dt ¼ kdx=maxðVinterface;UflowÞ, where k is set to 0.1 in the
calculations performed.

4.5. Computational setup

The numerical method described above is now used in

computations of dendritic growth and is shown to pro-

vide physically correct solutions for dendritic growth of

crystals. It will be shown that the effects of all the control

parameters, namely undercooling (D), anisotropy (e) and
imposed flow strength (U1d0=al) are correctly captured
by the algorithm. The results are compared quantita-

tively with results from the phase-field approach and

qualitatively with the solvability theory.

To start the computations, a semi-circular seed

crystal is placed at the origin of the computational do-

main of dimension ð0:5HÞ � ðHÞ. Symmetry across the
y-axis is exploited to solve in the half-space. In calcu-

lations below, we adopt H ¼ 2000. The initial radius of
the seed is 15 non-dimensional units (i.e. 15 capillary

lengths in dimensional terms) and it is placed with its

center at (0,1000). A uniform fine mesh is placed in an

inner region, as shown in Fig. 1, while the mesh is

coarsened linearly from the edge of the fine mesh region

to the end of the domain. We have shown in earlier work

[5], that the sharp interface approach gives solutions for

dendritic growth that are independent of the mesh

spacing and mesh orientation. In the following we

compare the results of solutions that were deemed grid

independent by performing a series of calculations on

progressively refined grids for the case shown in Fig. 2,

until the steady-state results on two successive grid sizes

were found to agree adequately with each other (to

within a few percent for the tip radius and velocity).

The computations are performed starting from an

initial condition supplied to be H ¼ 0 in the solid seed
and H ¼ �D, the nondimensional undercooling value,
elsewhere in the domain. Since this initial temperature

field is discontinuous at the interface, the interface ve-

locity in the initial stage of the calculations will be very

large. To avoid problems with stability due to the large

value of velocity, the seed is held in place (i.e. interface

velocity is set to zero) for the first hundred time steps of

the calculation. This allows a thermal boundary layer of

the extent of a few mesh spacings to form around the

seed. Thereafter the seed is allowed to grow with the

velocity computed from Eq. (8). Although these initial

conditions are somewhat arbitrary, the evolution of the

dendrite to the desired theoretical tip shape appears to

proceed regardless of the initial condition, providing a

strong indication that the tip selection mechanism op-

erates early in the growth of the dendrite. Computations

are carried out until the tip velocity, radius and selection

parameter have each hit steady-state values. The time

required to achieve steady-state depends on the param-

eters assigned for each case and a typical trend is shown

in Fig. 3(a) for the case with D ¼ 0:55, d0 ¼ 0:5 and
� ¼ 0:03. The non-dimensional tip velocity, Vtd0=al, tip
radius qt and selection parameter r� are shown in the

figure with appropriate multipliers to fit all the curves on

Fine Mesh

Coarse 
Mesh  

Symmetry 
Line  

Inlet  

Outlet  

Symmetry 
Line

 

-=  

u8 = U d0 /α l

Nucleus

∆Θ

8

Fig. 1. Illustration of the computational set-up for the simulation of dendritic growth with flow.
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the same plot. The selection parameter appears to be

established very quickly in the growth process. The ve-

locity and tip curvature then adjust in time until they

approach steady-state values. This was found to be an

interesting common aspect in the computations of den-

dritic growth for the range of parameters explored in

this study. It appears that the pattern selection mecha-

nism that determines r� operates in the entire growth

process, even in the earlier stages of the growth, while

the radius and velocity of the tip are ‘‘driven’’ towards

appropriate values to yield the established r�. These

observations are consistent with those of Plapp and

Karma [29].

5. Results

The dendritic solidification calculations using the

current approach has been validated against solvability

theory in a previous paper [9]. Issues such as order of

accuracy have been addressed in the context of solidifi-

cation in Udaykumar et al. [5] and for the Navier–

Stokes equations for stationary and moving boundaries

in Ye et al. [6] and Udaykumar et al. [7] respectively. In

this paper, we compare our results with those from the

phase-field method as presented in Tong et al. [4]. Tong

et al. [4] and Tong [8] in turn have shown that their

results are in agreement with predictions of morpho-

logical solvability theory under certain assumptions

which we will point out later in this section.

In Fig. 2 we show the dendritic growth computed in a

half-space for purely diffusive transport. This case cor-

responds to D ¼ 0:55, e ¼ 0:03, m ¼ 4, i.e. four-fold
anisotropy. In the following calculations we maintain

the capillarity parameter d0 ¼ 0:5. The y-axis is a sym-

metry line. Only a part of the domain is shown. Grid

refinement studies were performed to ensure that the

result shown is independent of grid resolution.

The tip characteristics for this case were shown to

agree with solvability theory in Udaykumar et al. [9]. In

Fig. 2(a) we show successive shapes of the evolving

dendrite until steady-state dendrite growth is reached.

Fig. 2(b) shows the isotherms in the solid and liquid

phases. The contours in the solid represent the effects of

interface curvature since, in the absence of temperature

variations on the interface arising from the Gibbs–

Thomson effect, the temperature in the solid would have

been uniformly equal to the melting temperature (i.e.

H ¼ 0).
Fig. 3 shows the effect of convection on dendritic

growth for D ¼ 0:55, e ¼ 0:03, m ¼ 4. These are the
same parameters as for Fig. 2. In the case of Fig. 3

however, a flowfield is imposed. The non-dimensional

flow strength at the farfield u1 ¼ 0:0675. Fig. 3(a) shows
the behavior of the tip with time. The tip velocity, radius

and selection parameter are all shown in Fig. 3(a), with

appropriate multipliers to clarify the plot. The tip of

interest is the one facing the oncoming flow. The tip

characteristics quickly approach steady-state values.

Towards the end of the time duration for which this

dendrite tip was computed, the tip is approaching the

edge of the fine mesh region and hence the tip charac-

teristics begin to deviate slightly from the steady-state

values. The dendrite shapes at different instants in the

approach to steady-state are plotted in Fig. 3(b). The

temperature contours are shown in Fig. 3(c). Note that,

in contrast to the shapes and temperature fields in Fig. 2,

in this case convection introduces a fore-aft asymmetry.

The tip facing the oncoming flow grows much faster

than the one downstream due to the thinner thermal

Fig. 2. Dendrite solutions for the case without flow, D ¼ 0:55, e ¼ 0:03. (a) Dendrite shape evolution with time. (b) Temperature
contours around the dendrite for the final shape in (a).
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boundary layer at the front of the dendrite. The tip that

grows laterally also grows fairly rapidly, in fact at a rate

that is close to the diffusion-driven growth velocity

[4,22,25]. However this tip is asymmetric across the tip

axis since the thermal boundary layer on the upstream

side is thinner than that on the downstream side. It is

noticed that the tip that is downstream does not achieve

a steady-state, at least for the duration of the compu-

tations shown. Therefore the most natural choice for

comparison and analysis is the upstream tip. In Fig. 3(d)

and (e), we show the velocity field and pressure contours

around the dendrite for the final (steady-state) shape

shown in Fig. 3(b). A zoomed-in view is also shown near

the tip that grows laterally. These figures show that the

present sharp-interface technique computes the velocity

and pressure fields around the dendrite in a smooth

fashion and that the no-slip boundary condition is ap-

plied in a sharp manner thus capturing the boundary

layer without smearing.

The effect of crystalline anisotropy is shown in Fig. 4.

Fig. 4(a) corresponds to e ¼ 0:01 and Fig. 4(b) to
e ¼ 0:05. The flow is at u1 ¼ 0:0675, the same value as
in Fig. 3. The dendrites are evolved until a steady-state

upstream tip is reached. The influence of anisotropy in

sharpening the tip is clearly seen in the figures. Quanti-

tative aspects of these dendrite tips will be discussed

later. In Fig. 5 we show the evolution of the tip with

D ¼ 0:55, e ¼ 0:03, m ¼ 4 and u1 ¼ 0:14, i.e. twice the
flow strength compared to the case in Fig. 4. The effect

of the enhanced convection on the dendrite tip appears

to be imperceptible in the shape of the dendrite. Al-

though the thermal field shows some enhancement of the

fore-aft asymmetry due to the increased strength of the

flow, the differences between Figs. 3(c) and 5(b) are

small. The tip characteristics are also seen (Tables 1 and

2) to change only mildly. The variation in the tip velocity

and tip radius for flow strengths lower than 0.0675 is

quite significant as see from Table 2 and Fig. 7. There

Fig. 3. Dendrite solutions for forced flow with U1 ¼ 0:0675, e ¼ 0:03, D ¼ 0:55. (a) The tip characteristics of the dendrite and the
approach to steady-state tip behavior. (b) Evolution of the shape of the dendrite. (c) Temperature contours around the dendrite. (d)

Pressure contours and velocity vectors around the dendrite. (e) Close-up of the pressure contours and the velocity vectors around the

tip growing in the +x-direction.
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appears to be a lowering of the slopes of the Vt against
u1 and qt against U1 curves. This behavior has been

shown in the phase-field study by Tong [8]. The tip ve-

locity and radius appear to saturate as the u1 increases.
The Prandtl number in all of the above cases was

23.1, a value corresponding to the popular organic

model material succinonitrile [21]. In Fig. 6 we compare

the results for Pr ¼ 23:1 with that for Pr ¼ 0:01, this
latter value being more representative of metallic melts.

Fig. 6(a) shows the evolution and temperature field for

Pr ¼ 23:1 and u1 ¼ 0:035, while Fig. 6(b) shows the
result for Pr ¼ 0:01 at the same flow strength (i.e. Rey-
nolds number). The upstream tip for the lower Pr case
grows much faster than for the higher Pr case, the
steady-state velocity being about twice that of the higher

Prandtl number case (Table 2). The lateral tip and the

downstream tip are better developed in the higher Pr
case in Fig. 6(a) when compared to the lower Pr case in
Fig. 6(b). This is because the lateral and downstream

tips are less affected by convection than the upstream

tips. Thus, the lower Pr affects the upstream tip by in-
creasing the tip velocity, while the other two tips are

growing at essentially the same velocity as for the higher

Pr case.
The interesting feature of the tip behavior is that, as

can be seen in Table 2, the selection parameter is nearly

independent of the Prandtl number. In the case of the

lower Pr case, due to the higher diffusivity in the latter
case, in the wake region, the temperature contours show

greater spreading than in the higher Pr case. This
spreading is more evident in Fig. 6(c) which shows the

dendritic shape evolution and temperature field around

the final dendritic shape for Pr ¼ 0:01, u1 ¼ 0:0175 and
e ¼ 0:03, i.e. the Reynolds number is half of the value in
Fig. 6(b). For this lower Re case the dendrite tip radius is
larger than for the higher Re case. The wake is also
broadened when compared to Fig. 6(b). Remarkably,

the selection parameter, shown in Table 2 changes very

little although the tip velocity and radius are changed

significantly. This is entirely in agreement with the-

ory[22,23,25] which predicts that the selection parameter

is dependent on the crystalline anisotropy and only

weakly on the Reynolds number, as formulated in Eqs.

(1) and (2).

We now present quantitative results from the calcu-

lations where the parameters e, Reynolds number (more
specifically the flow strength u1) and Pr have been var-
ied and the upstream tip characteristics have been

compared with the phase-field results of Tong et al. [4].

In Fig. 7 we compare the tip velocity and tip radius for

D ¼ 0:55, e ¼ 0:03, m ¼ 4 as they vary with the imposed
flow strength. As shown in the figure the results compare

well with those of Tong et al. The tip velocity, in Fig.

7(a), shows slight differences at the higher flow strength

but is in excellent agreement at the lower values. The tip

radius, compared in Fig. 7(b) is in much better agree-

Fig. 4. Dendrite shape evolution for the case of flow with

U1 ¼ 0:0675 and D ¼ 0:05. (a) with e ¼ 0:01, (b) with e ¼ 0:05.

Fig. 5. Dendrite solution in the presence of flow U1 ¼ 0:14, D ¼ 0:55, e ¼ 0:03. (a) The shape of the dendrite at different stages of
evolution. (b) Temperature contours around the dendrite.
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ment for the range of flow strengths (i.e. Re) investi-
gated. Fig. 8 shows the variation of the tip characteris-

tics with the control parameters. In Fig. 8 for the case of

D ¼ 0:55, e ¼ 0:03, m ¼ 4 we plot all the tip data (by
using suitable multipliers as indicated to place all the

data on the same graph) against the flow strength u1 (or
equivalently the Reynolds number). Clearly the tip ve-

locity increases as the flow strength increases, while the

tip radius decreases. The tip selection parameter remains

fairly unchanged as the Reynolds number is varied.

Theory, as expressed in Eq. (2), bears this observation

out.

In Fig. 8(b) we compare the tip Peclet number (Pet)
against the flow Peclet number (Pef ) for two different
anisotropy values, e ¼ 0:01 and e ¼ 0:03. For e ¼ 0:03,
we compare with the data provided in Tong et al. [4].

The agreement between the present results and that in

Tong et al. is excellent. In Fig. 8(c) we plot tip data

against the anisotropy strength e for a flow strength

given by u1 ¼ 0:0675. The tip velocity increases as the
anisotropy increases while the tip radius decreases, i.e.

the dendrite tip becomes sharper and grows faster. No-

tably, the selection parameter is seen to be extremely

sensitive to the anisotropy strength, whereas it showed

little variation with the flow strength and the Prandtl

number, again in agreement with Eq. (2).

Fig. 9 shows the effects of the Prandtl number and

flow strength on the upstream tip. The tip velocity in

Fig. 9(a) increases with flow strength (Reynolds number)

for both Pr ¼ 23:1 and 0.01. However, the increase for
the lower Prandtl number case is markedly higher than

that for the higher Pr. This large difference indicates that
extrapolation of observations of tip behavior obtained

from model organic materials to metallic materials must

be made with caution. The difference between the two

Prandtl numbers is even more dramatic for the tip ra-

dius. The lower Prandtl number melts will produce

much sharper dendrite tips. As an implication for so-

lidification processing of materials, the dendrite tips in

directions oriented differently with the flow are going to

be much more different in growth rates as well as length

scales for the lower Pr metallic melts than for model
organic melts. It is worthy of note that the selection

parameter is insensitive to the Prandtl number, at least

for the limited range of parameters explored here. The

selection parameter appears to decrease weakly with the

Reynolds number for both Prandtl numbers. Although

we have not investigated the issue of side-branching in

this paper, once the tip matures noise effects will cause

the tip to become unstable to side-branching [8,23]. The

sharper upstream tip will likely break down first and

the resulting microstructure will reflect the presence of

the side branches, i.e. one would expect finer micro-

structures developed on the upstream side.

In the above, while we have compared our results

quantitatively with the phase-field results we have only

qualitatively compared the behaviors with the linea-

rized solvability theory. The difficulty in quantitatively

Table 1

Comparison of the results from the present sharp-interface calculations with phase-field results of Tong et al.

u1 e Results of V �
t q�

t r� Pet Pef

0.031 0.01 Present 0.00925 102.01 0.2077 1.58 0.471

Tong et al. 0.0085 106 0.21 1.64 0.451

0.0675 0.03 Present 0.0238 16.6 0.305 0.56 0.198

Tong et al. 0.0231 17.7 0.28 0.59 0.205

0.0675 0.05 Present 0.031 5.47 2.22 0.185 0.084

Tong et al. 0.029 5.7 2.15 0.193 0.071

Table 2

Tip data obtained for various parameters using the present sharp interface technique

E Pr u1 V �
t q�

t r� Pet Pef

0.01 23.1 0.0350 0.0100 92.20 0.0235 0.461 1.614

0.01 23.1 0.0675 0.0115 128.00 0.0106 0.736 4.320

0.02 23.1 0.0675 0.0188 30.77 0.1127 0.288 1.038

0.03 23.1 0.0175 0.0153 20.62 0.3074 0.158 0.180

0.03 23.1 0.0350 0.0190 18.20 0.3178 0.173 0.319

0.03 23.1 0.1400 0.0270 16.53 0.2711 0.194 1.157

0.05 23.1 0.0675 0.0310 5.47 2.2280 0.085 0.185

0.03 0.01 0.0050 0.0165 18.87 0.3404 0.156 0.047

0.03 0.01 0.0175 0.0270 15.43 0.3110 0.208 0.135

0.03 0.01 0.0350 0.0350 13.60 0.3089 0.238 0.238
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comparing with theory lies in the fact that the theoretical

relationships for tip parameters, given by Eqs. (1) and

(2) are obtained after making several simplifying

assumptions. Chief among these is the assumption of a

translating isothermal paraboloid of revolution. It has

been shown that for large anisotropies the tip deviates

Fig. 7. Tip characteristics vs. flow strength (Reynolds number). For e ¼ 0:03, D ¼ 0:55. (a) The non-dimensional tip velocity vs. u1. (b)
Non-dimensional tip radius vs. u1.

Fig. 6. Dendrite solutions with flow. Effect of Prandtl number. (a) Pr ¼ 23:1, u1 ¼ 0:035, e ¼ 0:03 (a1) shows shape evolution and (a2)
shows temperature contours at final shape shown. (b) Pr ¼ 0:01, u1 ¼ 0:035, e ¼ 0:03 (b1) shows shapes and (b2) shows the tem-
perature contours at final shape shown. (c) Pr ¼ 0:01, u1 ¼ 0:0175, e ¼ 0:03 (c1) shows the shapes and (c2) shows the temperature
contours at final shape shown.
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significantly from a paraboloid [8]. This applied both for

the diffusion-driven and forced convection influenced tip

growth cases. In fact, Tong et al. [4] show that if a pa-

rabola is fit to the computed dendrite tip, then the radius

of curvature of such a paraboloid at the tip in combi-

nation with the computed tip velocity gives selection

parameters that are in agreement with the solvability

theory. Thus, while theory is able to provide qualitative

guidance as to the tip behavior and selection mechanism,

quantitative comparisons are only possible when the

assumption of a paraboloidal tip is made.

In Tables 1 and 2 we have tabulated results obtained

for a range of parameters that may prove useful as

benchmarks for the 2D simulations of dendritic growth

with convection as imposed in the present calculations

and Tong et al. [4]. Table 1 compares numerically our

results for different Reynolds numbers and anisotropies

with the available results from Tong et al. The results are

shown to be numerically in excellent agreement with

each other for all the tip characteristics. These results

can therefore be useful as benchmarks. In Table 2 we list

data on the upstream tip for a range of parameters in-

cluding the two Prandtl numbers used. We also list the

value of the selection parameter r� computed for all

cases.

6. Summary

We have developed a numerical method for the

computation of dendritic crystal growth where the so-

lid–liquid interface is treated as a sharp front. Accurate

solution of complicated evolving phase boundaries is

facilitated by maintaining a sharp solid–liquid interface

and the challenge is to develop the sharp-interface

numerics on a mesh that does not conform to the in-

terface shape. The sharp interface nature and the sec-

ond-order spatial and temporal discretization coupled

with a conservative finite volume scheme allows us to

obtain solutions for dendritic crystal growth in good

agreement with theory and with solutions of den-

dritic growth with flow obtained from other numerical

Fig. 8. Tip characteristics (radius, velocity and selection parameter) and their variation with the control and material parameters. (a)

Tip data plotted against the flow strength (equivalently the Reynolds number). (b) Tip Peclet number vs Flow Peclet number for two

values of anisotropy (e ¼ 0:01 and e ¼ 0:03). (c) Tip data plotted against the anisotropy strength for a flow strength of u1 ¼ 0:0675.
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techniques. We have demonstrated in the results pre-

sented in this paper that the effects of undercooling,

anisotropy, flow strength and material property varia-

tions (such as Prandtl number) are each computed

correctly by the method. The uniquely selected features

of the dendrite tip, namely tip radius and tip velocity

and the numerically obtained selection parameter are

found to be in agreement with phase-field results. The

ability of the method to treat material property jumps

as discontinuous is important in the simulation of so-

lidification in alloys and solutions, where the species

transport equation comes into play. Solute segregation

from the solid into the melt/solution is a critical part of

such processes. The large jump in species diffusivity

from solid to liquid phase is best handled by treating

each phase separately, a capability that is provided by

the present sharp interface technique. Ongoing work

involves solution of solidification phenomena in the

presence of impurities [28] and imposed flows in the

presence of solutes.
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